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Abstract

Recent work suggests VAR models of output, inflation, and interest rates may be

prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting

methods might be used to improve the accuracy of forecasts from a VAR. The uncertainty

inherent in any single representation of instability could mean that combining forecasts

from a range of approaches will improve forecast accuracy. Focusing on models of U.S.

output, prices, and interest rates, this paper examines the effectiveness of combining

various models of instability in improving VAR forecasts made with real–time data.
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1 Introduction

Small–scale VARs are now widely used in forecasting (see, e.g., Jacobson et al. (2001),

Robertson and Tallman (2001), Del Negro and Schorfheide (2004), and Favero and Mar-

cellino (2005)). However, there is an increasing body of evidence suggesting that these VARs

may be prone to instabilities (see, e.g., Kozicki and Tinsley (2001, 2002), Cogley and Sargent

(2005), and Boivin (2006)). Although many different structural forces could lead to insta-

bilities in macroeconomic VARs, much of the aforementioned literature has focused on shifts

potentially attributable to changes in the behavior of monetary policy.

Accordingly, Clark and McCracken (2006) consider various methods for improving the

forecast accuracy of VARs in the presence of structural change, including: sequentially updat-

ing lag orders, using various observation windows for estimation, working in differences rather

than levels, making intercept corrections, allowing stochastic time variation in model param-

eters, allowing discrete breaks in parameters, discounted least squares estimation, Bayesian

shrinkage, and detrending of inflation and interest rates. Simple averages (across the various

methods just described) were consistently among the best performers.

Our preferred interpretation of this result is that in practice it is very difficult to know the

form of structural instability, and model averaging provides an effective method for forecasting

in the face of such uncertainty. As summarized by Timmermann (2006), competing models

will differ in their sensitivity to structural breaks. Depending on the size and nature of

structural breaks, models that quickly pick up changes in parameters may or may not be

more accurate than models that do not. For instance, in the case of a small, recent break,

a model with constant parameters may forecast more accurately than a model that allows a

break in coefficients, due to the additional noise introduced by the estimation of post–break

coefficients (see, for example, Clark and McCracken (2008) and Pesaran and Timmermann

(2007)). However, in the case of a large break well in the past, a model that correctly

picks up the associated change in coefficients will likely forecast more accurately than models

with constant or slowly changing parameters. Accordingly, Timmermann (2006) and Pesaran

and Timmermann (2007) suggest that combinations of forecasts from models with varying
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degrees of adaptability to uncertain structural breaks will be more accurate than forecasts

from individual models.

This paper provides evidence on the ability of various forms of forecast averaging to im-

prove the real–time forecast accuracy of small-scale macroeconomic VARs in the presence of

uncertain forms of model instabilities. We consider a wide range of approaches to averag-

ing forecasts obtained with a variety of the aforementioned primitive methods for managing

model instability. The average forecasts include: equally weighted averages with and without

trimming, medians, common factor-based forecasts, Bates–Granger combinations estimated

with ridge regression, MSE–weighted averages, lowest MSE (predictive least squares) fore-

casts, Bayesian model averages, and combinations based on quartile average forecasts.1 For

each of these averaging approaches, we construct real time forecasts of each variable using

real–time data. We compare our results to those from simple baseline univariate models and

selected baseline VAR models.

Our results indicate that while some of the primitive forms of managing structural in-

stability sometimes provide the largest gains in terms of forecast accuracy — notably those

models with some form of Bayesian shrinkage — model averaging is a more consistent method

for improving forecast accuracy. Not surprisingly, the best type of averaging often varies with

the variable being forecast. However, after aggregating across all models, horizons and vari-

ables, it is clear that the simplest forms of model averaging — such as those that use equal

weights across all models — consistently perform among the best methods. The best forecast

is a simple average of projections from a univariate model and a VAR using using detrended

inflation and interest rates. At the other extreme, forecasts based on OLS–type combination

and factor model–based combination rank among the worst.

The remainder of the paper proceeds as follows. Section 2 describes the real-time data

and samples. Section 3 provides a synopsis of the forms of model averaging used to forecast.

1In the interest of tractability, we abstract from the predictive likelihood approach to model and forecast
averaging examined in Eklund and Karlsson (2007). Our forecasts based on out-of-sample MSE weighting
of course incorporate some of the flavor of weighting on the basis of predictive likelihood. However, the
computational intensity of our analysis (large numbers of variables and models, long samples, etc.) and
the variety of approaches used to model estimation (OLS for full and rolling samples, Minneapolis BVAR
estimation for full and rolling samples, etc.) would pose challenges to the inclusion of a predictive likelihood
approach. Accordingly, we leave further analysis of predictive likelihood approaches to future research.
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Section 4 presents our results on forecast accuracy. Section 5 concludes.

2 Data

We consider the real–time forecast performance of models with three different measures of

output (y), two measures of inflation (π), and a short–term interest rate (i). The output

measures are GDP or GNP (depending on data vintage) growth, an output gap (hereafter,

the HPS gap) computed in real time with the method described in Hallman, et al. (1991),

and an output gap estimated in real time with the HP filter. The inflation measures include

the GDP or GNP deflator or price index (depending on data vintage) and CPI. The interest

rate is the 3–month Treasury bill rate; using the federal funds rate yields qualitatively similar

results. Growth and inflation rates are measured as annualized log changes (from t − 1 to

t). Output gaps are measured in percentages (100 times the log of output relative to trend).

Interest rates are expressed in annualized percentage points.

The raw data are from the Federal Reserve Bank of Philadelphia’s Real–Time Data Set

for Macroeconomists (RTDSM), the Board of Governor’s FAME database, and the website

of the Bureau of Labor Statistics (BLS). Real–time data on GDP or GNP and the GDP or

GNP price series are from the RTDSM. Hereafter we simply use the notation “GDP” and

“GDP price index” to refer to the output and price series, even though the measures are

based on GNP and a fixed weight deflator for much of the sample. In the case of the CPI

and the interest rates, for which real time revisions are small to essentially non–existent, we

simply abstract from real time aspects of the data. For the CPI, we follow the advice of

Kozicki and Hoffman (2004) for avoiding choppiness in inflation rates for the 1960s and 1970s

due to changes in index bases, and use a 1967 base year series taken from the BLS website.

For the T-bill rate, we use a series obtained from FAME.

The full forecast evaluation period runs from 1970:Q1 through 2005; as detailed in section

3, forecasts from 1965:Q4 through 1969:Q4 are used as initial values in the combination

forecasts that require historical forecasts. Accordingly, we use real time data vintages from

1965:Q4 through 2005:Q4. The vintages of the RTDSM are dated to reflect the information

available around the middle of each quarter. Normally, in vintage t, the available NIPA data
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run through period t− 1. The start dates of the raw data available in each vintage vary over

time, ranging from 1947:Q1 to 1959:Q3, reflecting changes in the published samples of the

historical data. At each forecast origin t, we use vintage t data to estimate output gaps and

the forecast models and then construct forecasts for periods t and beyond. The starting point

of the model estimation sample is the maximum of (i) 1955:Q1 and (ii) the earliest quarter

in which all of the data in a given model are available, plus five quarters to allow for four

lags and differencing or detrending.

We examine accuracy results for forecast horizons of the current quarter (h = 0Q), the

next quarter (h = 1Q), four quarters ahead (h = 1Y ), and eight quarters ahead (h = 2Y ). In

keeping with common central bank practice, the 1– and 2–year ahead forecasts for GDP/GNP

growth and inflation are four–quarter rates of change. The 1– and 2–year ahead forecasts for

output gaps and interest rates are quarterly levels in periods t+4 and t+8, respectively. All

of the multi–step forecasts are obtained by iterating the 1–step ahead models.

We follow Romer and Romer (2000) and use the second available estimates of GDP/GNP

and the GDP/GNP deflator as actuals in evaluating forecast accuracy.2 In the case of h–step

ahead forecasts made for period t + h with vintage t data ending in period t− 1, the second

available estimate is normally taken from the vintage t + h + 2 data set. In light of our

abstraction from real time revisions in CPI inflation and interest rates, for these series the

real time data correspond to the final vintage data.

3 Forecast methods

The forecasts of interest in this paper are combinations of forecasts from a wide range of

approaches to allowing for structural change in trivariate VARs. Table 1 lists the set of

individual VAR forecast methods considered in this paper, along with some detail on forecast

construction. To be precise, for each model — defined as being a baseline VAR in one measure

of output (y), one measure of inflation (π), and one short–term interest rate (i) — we apply

each of the estimation and forecasting methods listed in Table 1.

Note that, although we simply refer to all the underlying forecasts as VAR forecasts,

2Our broad findings are highly robust to alternative definitions of actuals: 1st available, 5th available, and

final vintage.
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in fact the list of individual models includes a univariate specification for each measure of

output, inflation, and the interest rate. For output the univariate model is an AR(2). In the

case of inflation, we follow Stock and Watson (2007) and use an MA(1) process for the change

in inflation (∆π), estimated with a rolling window of 40 observations. The univariate model

for the short-term interest rate is also specified as a rolling MA(1) in the first difference of

the series (∆i).

Table 2 details all of the approaches we use to combining forecasts from these underlying

models. The remainder of this section explains the averaging methods.

3.1 Equally weighted averages

We begin with seven simple forms of model averaging, each using what could loosely be

described as equal weights. The first is an equally weighted average of all the VAR forecasts

in Table 1. Specifically, for a given combination of measures of output, inflation, and the

interest rate (for example, for the combination GDP growth, GDP inflation, and the T-bill

rate), we average forecasts from the 50 VARs listed in Table 1. We also consider the median

forecast and 10 and 20 percent trimmed means.

We include a fifth average forecast approach motivated by Clark and McCracken (2008),

who show that forecast accuracy can be improved by combining forecasts from models esti-

mated with recursive (all available data) and rolling samples. For a given VAR(4), we form

an equally weighted average of the model forecasts constructed using parameters estimated

(i) recursively and (ii) with a rolling window of the past 60 observations. Three other av-

erages are motivated by the Clark and McCracken (2005a) finding that combining forecasts

from nested models can improve forecast accuracy. We consider an average of the univariate

forecast with the VAR(4) forecast, an average of the univariate forecast with the DVAR(4)

forecast, and an average of the univariate forecast with a forecast from a VAR(4) in output,

detrended inflation, and the detrended interest rate (see Table 1 and section 3.7 for more

information on the detrended VAR).
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3.2 Combinations based on Bates–Granger/ridge regression

We also consider a large number of average forecasts based on historical forecast performance

— one such approach being forecast combination based on Bates and Granger (1969) regres-

sion. For these methods, we need an initial sample of forecasts preceding the sample to be

used in our formal forecast evaluation. We use an initial sample of forecasts from 1965:Q4

(the starting point of the RTDSM) through 1969:Q4. Therefore, in the case of current quarter

forecasts constructed in 1970:Q1, we have an initial sample of 17 forecasts to use in estimating

combination regressions, forming MSE weights, etc.

To obtain Bates–Granger combinations, for each of output, inflation, and the interest

rate we use the data that would have been available to a forecaster in real time to estimate

a generalized ridge regression of the actual data on the 50 VAR forecasts, shrinking the

coefficients toward equal weights. Our implementation follows Stock and Watson (1999):

letting Zt+h|t denote the vector of 50 forecasts of variable zt+h made in period t and βequal

denote a 50× 1 vector filled with 1/50, the combination coefficient vector estimate is

β̂ = (cI50 +
∑

t

Zt+h|tZ
′
t+h|t)

−1(cβequal +
∑

t

Zt+h|tzt+h), (1)

where c = k × trace(50−1
∑

t Zt+h|tZ
′
t+h|t). We consider three different forecasts, based on

different values of the shrinkage coefficient k: .001, .25, and 1. A smaller (larger) value of k

implies less (more) shrinkage. We use k = .001 to approximate OLS combination. For each

k, we consider forecasts based on both a recursive estimate of the combination regression and

a 10–year rolling sample estimate (using all available if the sample is shorter than 10 years).

3.3 Common factor combinations

Stock and Watson (1999, 2004) develop another approach to combining information from

individual model forecasts: estimating a common factor from the forecasts, regressing actual

data on the common factor, and then using the fitted regression to forecast into the future.

Therefore, using the real time forecasts available through the forecast origin t, we estimate

(by principal components) one common factor from the set of 50 VAR forecasts for each of

output, inflation, and the interest rate (estimating one factor for output, another for inflation,
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etc.). We then regress the actual data available in real time as of t on a constant and the

factor. The factor–based forecast is then obtained from the estimated regression, using the

factor observation for period t.

3.4 MSE–weighted and PLS forecasts

We also consider several average forecasts based on inverse MSE weights. At each forecast

origin t, historical MSEs of the 50 VAR forecasts of each of output, inflation, and the interest

rate are calculated with the available forecasts and actual data, and each forecast i of the

given variable is given a weight of MSE−1

i
/

∑
i
MSE−1

i
. In addition, following Stock and

Watson (2004), we consider a forecast based on a discounted mean square forecast error (in

which, from a forecast origin of t, the squared error in the earlier period s is discounted by

a factor δt−s). We use a discount rate of δ = .95.

In addition, we consider a predictive least squares (PLS) forecast. At each forecast origin

t, we identify the model forecast with the lowest historical MSE, and then use that single

model to forecast. We compute alternative MSE–weighted and PLS forecasts with not only

recursive and 10-year rolling samples but also a 5–year rolling sample of forecasts.

3.5 Quartile forecasts

Aiolfi and Timmermann (2006) develop alternative approaches to forecast combination that

take into account persistence in forecast performance — the possibility that some models

may be consistently good while others may be consistently bad. Their simplest forecast is

an equally weighted average of the forecasts in the top quartile of forecast accuracy (that

is, the forecasts with historical MSEs in the lowest quartile of MSEs). More sophisticated

forecasts involve measuring performance persistence as forecasting moves forward in time,

sorting the forecasts into clusters based on past performance, and estimating combination

regressions with a number of clusters determined by the degree of persistence. For tractability,

we consider simple versions of the Aiolfi–Timmermann methods, based on just the first and

second quartiles. Specifically, we consider a simple average of the forecasts in the top quartile

of historical forecast accuracy. We also consider a forecast based on an OLS–estimated

combination regression including a constant, the average of the first quartile forecasts, and
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the average of the second quartile forecasts.

3.6 Bayesian model averages

We also consider forecasts obtained by Bayesian model averaging (BMA). At each forecast

origin t, for each equation of the 50 models listed in Table 1, we calculate a posterior prob-

ability from prior probabilities and marginal likelihoods for each model, with each model

assigned the same prior probability.

We consider three different measures of the marginal likelihood, each of which yields a

different BMA forecast: AIC, BIC, and Phillips’ (1996) PIC.3 The BIC is well known to be

proportional to the marginal likelihood of models estimated by OLS or, equivalently, diffuse

priors.4 The AIC can be viewed as another measure of the marginal likelihood for models

estimated by OLS.5 Phillips (1996) develops another criterion, PIC, as a measure of marginal

likelihood appropriate for comparing VARs in levels, differences, and with informative priors.

Specifically, at each forecast origin t, for each of the model estimates listed in Table 1, we

use in-sample model residuals to compute the AIC, BIC, and PIC for each equation of the

model.6 For each criterion, we then form a BMA forecast using −.5T times the information

criterion value as the marginal likelihood of each equation.

In our application, calculating the information criteria requires some decisions on how

to deal with some of the important differences in estimation approaches (e.g., rolling versus

recursive estimation) for the 50 underlying model forecasts. In the case of models estimated

with a rolling sample of data, we calculate the AIC, BIC, and PIC based on a model that

allows a discrete break in all the model coefficients at the point of the beginning of the

rolling sample. For models estimated by discounted least squares (DLS), we calculate the

information criteria using residuals defined as actual data less fitted values based on the DLS

3Our BMA forecasts are numerically equivalent to those that would be obtained under the information
criteria–weighting approach, based on in-sample sums of square errors, developed in Kapetanios, et al. (2007).

4BMA applications such as Garratt, Koop, and Vahey (2006) have also used BIC to estimate the marginal
likelihood and in turn average models.

5We compute the AIC without any small-sample corrections, as T · log σ̂
2 +2k, where T is the total sample

size at the forecast origin, σ̂
2 is the residual variance (normalized by T ), and k denotes the number of regressors

in the equation. We also compute the BIC and PIC without small-sample corrections.
6In calculating PIC for the univariate IMA models for inflation and interest rates, we simply approximate

the MA fits with AR(1) models estimated for ∆π and ∆i (estimating separate models for the rolling sample
and the earlier sample), and calculate PIC values using these AR(1) approximations.
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coefficient estimates.

In the case of the AIC and BIC applied to BVAR models, for simplicity we abstract

from the prior and calculate the criteria based on the residual sums of squares and simple

parameter count (PIC is calculated for VARs and BVARs, to take account of priors, as

described in Phillips (1996)).7 As Phillips (1996) notes, the prior is asymptotically irrelevant

in the sense that, as the sample grows, sample information dominates the prior. For marginal

likelihood measures other than PIC, taking (proper Bayesian) account of the finite–sample

role of the Bayesian prior in combining forecasts from models estimated with different priors

would require Monte Carlo integration, which is intractable in our large–scale, real–time

forecast evaluation.

3.7 Benchmark forecasts

To evaluate the practical merit of the averaging methods described above, we compare the

accuracy of the above combination or average forecasts against various benchmarks. In light

of common practice in forecasting research, we use forecasts from the univariate time series

models as one set of benchmarks.8

We also include for comparison forecasts from selected VAR methods that are either of

general interest in light of common usage or performed relatively well in our prior work: a

VAR(4); DVAR(4) (a VAR with inflation and the interest rate differenced); BVAR(4) with

conventional Minnesota priors; BVAR(4) with stochastically time–varying (random walk)

parameters; and a BVAR(4) in output, detrended inflation, and the interest rate less the

inflation trend. The BVAR(4) with inflation detrending draws on the work of Kozicki and

Tinsley (2001) on models with learning about an unobserved time–varying inflation target of

the central bank. For tractability in real time forecasting, we follow Cogley (2002) in estimat-

ing the inflation target or trend with exponential smoothing, with a smoothing parameter of

.05.9 Table 1 provides additional detail on all of these model specifications.

7For BVARs with TVP, at each point in time t we calculate the model residuals as a function of the period

t coefficients and use these residuals to compute the residual sums of squares.
8On average across horizons and samples, the univariate benchmarks we use are at least as accurate as

others that might be considered reasonable, such as random walks, recursive and rolling AR models with

BIC-determined lag orders, and recursive and rolling VAR models with BIC-determined lag orders.
9We set the smoothing parameter at .05, to resemble survey measures of long-run inflation expectations.
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4 Results

In evaluating the performance of the forecasting methods described above, we use root mean

square error (RMSE) to evaluate accuracy. In light of the potential for instabilities in forecast

performance, we examine accuracy over forecast samples of 1970-84 and 1985-2005.10

To be able to provide broad, robust results, in total we consider a large number of models

and methods — too many to be able to present all details of the results. We present more

detailed results on forecasts of GDP growth and inflation than forecasts of the output gap

measures or interest rates. We also focus on a few forecast horizons — those for h = 0Q,

h = 1Q, and h = 1Y — and present just summary results for the h = 2Y horizon

Tables 3 and 4 report forecast accuracy (RMSE) results for GDP growth and either GDP

price index-based or CPI-based inflation using 38 forecast methods. In each case we use

the 3-month T–bill as the interest rate, and present results for horizons h = 0Q, h = 1Q,

and h = 1Y (results for the h = 2Y horizon are available in the working paper version of

this paper). In Table 5 we report forecast accuracy results for the T-bill rate, from models

using GDP growth and GDP inflation. In every case, the first row of the table provides the

RMSE associated with the baseline univariate model, while the others report ratios of the

corresponding RMSE to that for the benchmark univariate model.

In Table 6 we take another approach to broadly determining which methods tend to

perform better than the benchmark. Across each variable, model and forecast horizon,

we compute the average rank of the methods included in Tables 3-5. We present average

rankings for every method we consider across each variable, forecast horizon, and the 1970-84

and 1985-05 samples (spanning all columns of Tables 3-5 plus unreported results for forecasts

from models using an output gap, forecasts of the T-bill rate from models using our various

measures of output and inflation, and forecasts for the h = 2Y horizon).

To determine the statistical significance of differences in forecast accuracy, as a rough

guide we use a non–parametric bootstrap patterned after White’s (2000).11 The individual

10With forecasts dated by the end period of the forecast horizon h = 0, 1, 4, 8, the VAR forecast samples
are, respectively, 1970:Q1+h to 1984:Q4 and 1985:Q1 to 2005:Q3-h.

11We say “rough guide” for two reasons. First, the models under consideration include both nested and non-
nested models. The inclusion of nested models violates the technical assumptions of White (2000) and Hansen
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p–values represent a pairwise comparison of each VAR or average forecast to the univariate

forecast. RMSE ratios that are significantly less than 1 at a 10 percent confidence interval

are indicated with a slanted font. To determine whether a best forecast in each column

of Tables 3-5 is significantly better than the benchmark once the data snooping or search

involved in selecting a best forecast is taken into account, we apply Hansen’s (2005) SPA

variant of White’s (2000) reality check test to differences in MSEs (for each model relative to

the benchmark). For each column, if the SPA test yields a p–value of 10 percent or less, we

report the associated RMSE ratio in bold font.12 We implement the bootstrap by sampling

(with moving block methods) from the time series of forecast errors underlying the entries

in Tables 3-5. The bootstrap is applied separately for each subperiod and for each forecast

horizon, using a block size of 1 for the h = 0Q forecasts, 2 for h = 1Q, and 5 for h = 1Y .

4.1 Declining volatility

While there are many nuances in the detailed results, some clear patterns emerge. The

univariate RMSEs clearly show the reduced volatility of the economy since the early 1980s.

For each horizon, the benchmark univariate RMSEs of GDP growth declined by roughly

two-thirds across the 1970-84 and 1985-05 samples (Tables 3-4). The reduced volatility

continues to be evident for the inflation measures (Tables 3-4). At the shorter horizons,

h = 0Q and h = 1Q, the benchmark RMSEs fell by roughly half, but at the longer h = 1Y

and (unreported) h = 2Y horizons the variability declined nearly two-thirds. The reverse is

true for the interest rate forecasts (Table 5). At the shorter horizons the benchmark RMSEs

fell by roughly two-thirds but at the longer horizons the variability declined by less than half.

(2005), for the reasons given in the Corradi and Swanson (2006) and West (2006) surveys of the literature
on testing for differences in forecast accuracy. The practical impact of the inclusion of nested models in data
snoop applications is unclear; the White and Hansen bootstraps may or may not remain reasonably accurate.
Second, for the reasons given in Clark and McCracken (2007), the application to real–time data also violates
the technical assumptions of White and Hansen. In this regard, too, the impact is unclear. In pairwise
applications, Clark and McCracken find that adjustments in testing necessary in principle for real time data
are modest. We suspect the same could be true in multiple model comparisons of the sort considered in this
paper.

12Because the SPA test is based on t–statistics for equal MSE instead of just differences in MSE, the forecast
identified as being significantly best by SPA may not be the forecast with the lowest RMSE ratio. For multi–
step forecasts, we compute the variance entering the t–test using the Newey and West (1987) estimator with
a lag length of 1.5h, where h denotes the number of forecast periods.
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4.2 Declining predictability

Consistent with the results in such studies as Campbell (2007), there are some clear signs of

a decline in the predictability of both output and inflation: it has become harder to beat the

accuracy of a univariate forecast. For example, at forecast horizons of h = 1Y or less, most

methods or models beat the accuracy of the univariate forecast of GDP growth during the

1970-84 period (Tables 3 and 4). In fact, many do so at a level that is statistically significant;

at each horizon Hansen’s (2005) SPA test identifies a statistically significant best performer.

But over the 1985-2005 period, for h = 0Q and h = 1Q forecasts only the BVAR(4)-TVP

models are more accurate at short horizons, and that improvement fails to be statistically

significant. At the h = 1Y horizon a handful of the methods continue to outperform the

benchmark univariate, but very few are statistically significant.

The predictability of inflation has also declined, although less dramatically than for out-

put. For example, in models with GDP growth and GDP inflation (Table 3), the best 1–year

ahead forecasts of inflation improve upon the univariate benchmark RMSE by more than 10

percent in the 1970-84 period but only about 5 percent in 1985-05. The evidence of a decline

in inflation predictability is perhaps most striking for CPI forecasts at the h = 0Q horizon.

In Table 4, most of the models convincingly outperform the univariate benchmark during

the 1970-84 period, with statistically significant maximal gains of roughly 20 percent. But in

the following period, fewer methods outperform the benchmark, with gains typically about

4 percent.

Predictability of the T-bill rate has not so much declined as it has shifted to a longer

horizon. In Table 5 we see that at the h = 0Q horizon far fewer methods outperform the

univariate benchmark as we move from the 1970-84 period to the 1985-05 period. However,

the decline in relative predictability starts to weaken as the forecast horizon increases. At

the h = 1Q horizon some methods continue to beat the benchmark, although with maximal

gains of only about 5 percent. But at the h = 1Y horizon, not only do a larger number of

methods improve upon the benchmark, they do so with maximal gains that are substantial

and statistically significant, at about 12 percent.

12



4.3 Averaging methods that typically outperform the benchmark

In light of the considerable sampling error inherent in small-sample forecast comparisons,

we shouldn’t expect to be able to identify a particular forecast model or method that beats

the univariate benchmark for every variable, horizon, and sample period. Instead, we might

judge a model or method a success if it beats the univariate benchmark most of the time

(with some consistency across the 1970-84 and 1985-05 samples) and, when it fails to do so,

is not dramatically worse than the univariate benchmark.

With this consideration in mind, the best forecast would appear to come from the pairwise

averaging class: the single best forecast is an average of the univariate forecast with the

forecast from a VAR(4) with inflation detrending (a VAR(4) in y, π − π∗

−1
, and i − π∗

−1
,

motivated by the work of Kozicki and Tinsley (2001, 2002)). More so than any other forecast,

the forecast based on an average of the univariate and inflation-detrended VAR(4) projections

beats the univariate benchmark a very high percentage of the time and, when it fails to do

so, is generally comparable to the univariate forecast. For example, in the case of forecasts

of GDP growth and GDP inflation from models in these variables and the T-bill rate (Table

3), this pairwise average’s RMSE ratio is less than 1 for all samples and horizons, with the

exception of h = 0Q and h = 1Q forecasts of GDP growth for 1985-05, in which cases the

RMSE ratio is only slightly above 1. For 1–year ahead forecasts of GDP growth, the RMSE

of this average forecast is about 15 percent below the univariate benchmark for 1970-84 and 9

percent below for 1985-05; the corresponding figures for GDP inflation are roughly 3 percent.

While not quite as good as the average of the univariate and inflation-detrended VAR

forecasts, some other averages also seem to perform well, consistently beating the accuracy of

the univariate benchmark. In particular, two of the other pairwise forecasts — the VAR(4)

with univariate and DVAR(4) with univariate averages — are often, although not always,

more accurate than the univariate benchmarks. For instance, in forecasts of GDP growth

and CPI inflation (Table 4), these pairwise averages’ RMSE ratios are less than 1 in 8 of 12

columns, and only slightly to modestly above 1 in the exceptions. The VAR(4)/univariate

average tends to have a more consistent advantage in 1985-05 forecasts. In addition, among

the inflation forecasts, the three pairwise combinations (univariate with inflation-detrended
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VAR(4), VAR(4) and DVAR(4)) are the most consistent out-performers of the univariate

benchmark across both the 1970-84 and 1985-05 subsamples.

The rankings in Table 6 confirm that, from a broad perspective, the best forecasts are

simple averages. In these rankings, the single best forecast is the average of the forecasts from

the univariate and inflation-detrended VAR(4). Across all variables, horizons, and samples,

this forecast has an average ranking of 6.4; the next–best forecast, the average of the univari-

ate and VAR(4) forecasts, has an average ranking of 12.0. While the univariate/inflation-

detrended VAR(4) average is, in relative terms, especially good for forecasting the T-bill

rate (see column 5), this forecast retains its top rank even when interest rate forecasts are

dropped from the calculations (column 2). This average forecast also performs relatively well

for forecasting both output (column 3 shows it ranks a close second to the BVAR(4) with

inflation detrending) and inflation (column 4 shows it ranks first). As to sample stability,

the univariate/inflation-detrended VAR(4) average is best in each of the 1970-84 and 1985-05

samples (columns 6-7).

4.4 Averaging methods that sometimes outperform the benchmark

Among other forecasts, it is difficult to identify any methods that might be seen as consistently

equaling or materially beating the univariate benchmark. Take, for instance, the simple

equally weighted average of all forecasts, applied to a model in GDP growth, GDP inflation,

and the T-bill rate (Table 3). This averaging approach is consistent in beating the univariate

benchmark in the 1970-84 sample, but in most cases fails to beat the benchmark in the

1985-05 sample. Similarly, in the case of T-bill forecasts from the same model (Table 5), the

all–model average loses out to the univariate benchmark for three of the eight combinations of

horizon and sample, while the generally best–performing method of averaging the univariate

and inflation-detrended VAR(4) forecasts beats the univariate benchmark in all cases.

A number of the other averaging methods perform quite comparably to the simple average

— and thus, by extension, fail to consistently equal or beat (materially) the univariate bench-

mark. Among the broad average forecasts, from the results in Tables 3-5 there seems to be no

advantage of a median or trimmed mean forecast over the simple average. Similarly, MSE–
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weighted forecasts are comparable to simple average forecasts, in terms of RMSE accuracy.13

For example, in the case of 1-year ahead forecasts of GDP growth and GDP inflation for

1985-05, the recursively MSE–weighted forecast’s RMSE ratios are .957 (growth) and 1.028

(inflation), compared to the simple average’s ratios of, respectively, .962 and 1.036 (Table

3). In 1-year ahead forecasts of CPI inflation (Table 4), the RMSE ratio of the recursively

MSE–weighted forecast is .951 for 1970-84 and 1.055 for 1985-05, compared to the simple

average forecast’s RMSE ratios of .950 and 1.066, respectively.

Using the best–quartile forecast yields mixed results: the best quartile forecasts are some-

times more accurate and other times less accurate than the simple average and univariate

forecasts. For example, in Table 4’s results for 1-year ahead forecasts of GDP growth, the

best quartile forecast based on a 10 year rolling sample has a RMSE ratio of .780 for 1970-84

and 1.017 for 1985-05, compared to the simple average forecast’s RMSE ratios of, respec-

tively, .839 and .997. Where the best quartile forecast seems to have a consistent advantage

over a simple average is in output forecasts for 1970-84.

The rankings in Table 6 confirm the broad similarity of the above methods — the simple

average, MSE–weighted averages, and best quartile forecasts. For example, the simple average

forecast has an overall average ranking of 14.5, compared to rankings of 12.0 for the recursive

MSE–weighted forecast and 12.6 for the recursive best quartile forecast. By comparison, the

best forecast, the univariate/inflation-detrended VAR(4) average, has an overall ranking of

6.4. In a very broad sense, most of the aforementioned average forecasts are better than the

univariate benchmarks in that they all have higher rankings than the univariate’s average

ranking of 17.3 (column 1). Note, however, that most of their advantage comes in the 1970-84

sample; in the later sample, the univariate forecast generally ranks higher. For instance, for

1970-84 output and inflation forecasts, the all–model average has an average accuracy rank

of 13.4, compared to the univariate ranking of 21.8 (column 6). But for 1985-05 forecasts, the

all–model average has an average accuracy rank of 16.6, compared to the univariate ranking

of 13.9 (column 7).

13However, in the case of forecasts of the HP output gap, the MSE–weighted averages are consistently

slightly better than the simple averages.
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4.5 Averaging methods that rarely outperform the benchmark

Many of the other averaging or combination methods are clearly dominated by univariate

benchmarks (and, in turn, other average forecasts). OLS combinations or ridge combinations

that approximate OLS often fare especially poorly. The OLS–approximating ridge regression

combination (the one with k = .001) consistently yields poor forecasts. For example, in the

case of 1985-05 1–year ahead forecasts of CPI inflation from models with GDP growth (Table

4), the RMSE ratio of the recursively estimated ridge regression with shrinkage parameter of

.001 is 1.458. Similarly, the forecasts based on OLS combination regression using the first and

second quartile average forecasts — especially those using rolling samples — are generally

dominated by other average forecasts.

While using more shrinkage improves the accuracy of forecast combinations estimated

with generalized ridge regression, even the combinations based on ridge regression with non–

trivial shrinkage are generally less accurate than the univariate benchmarks and simple av-

erage forecasts. For example, in 1985-05 forecasts of GDP growth from models using the

GDP inflation measure (Table 3), the RMSE ratios of the k = 1 recursive ridge regression

forecast are all above those of the simple average forecast. While the ridge forecasts are more

commonly beaten by the simple average, there are, to be sure, a number of instances (as in

the same example, but with a forecast sample of 1970-84) in which ridge forecasts are more

accurate. On balance, though, the ridge combinations seem to be inferior to alternatives such

as the simple average forecast.

Forecasts based on using factor model methods to obtain a combination are also generally

less accurate than alternatives such as the univariate and simple average forecasts. For

example, in the case of 1-year ahead forecasts of GDP growth and GDP inflation for 1985-

05, the recursively estimated factor combination forecast’s RMSE ratios are 1.021 (growth)

and 1.536 (inflation), compared to the simple average’s ratios of, respectively, .962 and 1.036

(Table 3). The same is true for the PLS forecasts: although PLS forecasts are sometimes

more accurate than the simple average, they are often worse. In the same example, the

recursive PLS forecast’s RMSE ratios are 1.108 and 1.011, respectively.

The BMA forecasts are also generally, although not universally, dominated by the simple
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average. For example, in Table 5’s forecasts of the T-bill rate, the RMSE ratios of the BMA:

BIC forecast are consistently above the ratios of the simple average forecast. However, in

Table 3’s results for GDP growth and GDP inflation, the accuracy of the BMA: BIC forecast

is generally comparable to that of the simple average forecast. Among the alternative BMA

forecasts, there are times when those using AIC or PIC to measure the marginal likelihood

are more accurate than those using BIC. But more typically, the BMA: BIC forecast is more

accurate than the BMA: AIC and BMA: PIC forecasts — the pattern is especially clear in

1985-05 forecasts.

The rankings in Table 6 provide a clear and convenient listing of the forecast meth-

ods that are generally dominated by the univariate benchmark and alternatives such as the

best–performing pairwise average forecast and the all–model simple average. As previously

mentioned, generalized ridge forecasts with little shrinkage (k = .001, so as to approximate

OLS–based combination) typically perform among the worst forecasts for all horizons, vari-

ables and periods, with average ranks consistently in the low- to mid-30s. OLS combinations

of quartile forecasts also fare quite poorly when based on rolling samples, with ranks gener-

ally in the mid-20s to low 30s. The factor–based combination forecasts are also consistently

ranked in the bottom tier, with average rankings generally in the mid-20s. While not neces-

sarily in the bottom tier, the BMA forecasts are generally dominated by the simple average

forecast. The overall rankings of the BMA: BIC, BMA: PIC, and BMA: AIC forecasts are

22.0, 25.4, and 29.0, respectively, compared with the simple average forecast’s ranking of 14.5

(first column). The average ranks of the PLS forecasts are consistently around 20 (or much

worse in the 5 year rolling case). The ridge–based combination forecasts with the highest de-

gree of shrinkage (k = 1) fare much better than the OLS–approximating ridge combinations,

but consistently rank below the simple average forecast. For example, as shown in the first

column, the 10–year rolling ridge regression with k = 1 has an average ranking of 16.9.

4.6 Single VAR methods

Among the single VAR forecasts included for comparison, the BVAR(4) with inflation de-

trending is generally best. While shrinkage in the form of averaging forecasts from an
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inflation-detrended VAR(4) with univariate forecasts is better than estimating the inflation-

detrended VAR(4) by Bayesian methods, the latter at least performs comparably to the

simple average forecast. For example, as shown in Table 3, forecasts of GDP growth from

the BVAR(4) with inflation detrending are often at least as accurate as the simple average

forecasts (as, for example, with 1-year ahead forecasts for 1985-05). However, forecasts of

GDP inflation from the same model are generally less accurate than the simple average (see,

for example, the 1-year ahead forecasts for 1985-05). These examples reflect a pattern evident

throughout Tables 3-4: while inflation detrending might be expected to most improve infla-

tion forecasts, it instead most improves output forecasts. Although the accuracy of the other

individual VAR models is more variable, overall these models are more clearly dominated by

the univariate benchmark and others such as the simple average forecast. For example, in

the case of the BVAR(4) using GDP growth and GDP inflation (and the T-bill rate), the

simple average forecasts are generally more accurate than the BVAR(4) forecasts of growth

over 1970-84, inflation over 1970-84, and inflation over 1985-05 (Table 3).

Consistent with these examples, forecasts from single models are generally dominated by

average forecasts. The pattern is clearly evident in the average rankings of Table 6. Across all

variables, horizons, and samples, the best–ranked single model is the BVAR(4) with inflation

detrending, which is out–ranked by 4 different average forecasts. The other single models

rank well below the BVAR(4) with inflation detrending.

While averages are broadly more accurate than single model forecasts, it is less clear that

they are consistently more accurate across sample periods. To check consistency, we calcu-

lated the correlation of the ranks of all 32 average forecasts and all 50 single model forecasts

across the 1970-84 and 1985-05 periods, based on the inflation and output results covered

in columns 6-7 of Table 6 (using rankings including T-bill rate forecasts yields essentially

the same correlations). The correlation of single model forecast rankings is 53 percent; the

correlation of the average forecast rankings is 92 percent. The implication is that not only

is the typical average forecast more accurate than the typical single model forecast, it is also

consistently so across the two periods.
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4.7 Interpretation

Why might simple averages in general and the pairwise average of univariate and inflation–

detrended VAR(4) forecasts be more accurate than any single model? As noted in the intro-

duction, in practice it is very difficult to know the form of structural instability, and competing

models will differ in their sensitivity to structural change. In such an environment, averages

across models are likely to be superior to any single forecast. In line with prior research on

combining a range of forecasts that incorporate information from different variables (such

as Stock and Watson (1999, 2004)), simple equally weighted averages are typically at least

as good as averages based on weights tied to historical forecast accuracy. The limitations

of weighted averages relative to simple averages are commonly attributed to difficulties in

estimating potentially optimal weights in finite samples, especially when the cross–section

dimension is large relative to the time dimension.

As to the particular success of forecasts using inflation detrending, one interpretation

is that removing a smooth inflation trend — a trend that matches up well with long–term

inflation expectations — from both inflation and the interest rate does a reasonable job of

capturing non–stationarities in inflation and interest rates. Kozicki and Tinsley (2001, 2002)

have developed such VARs from models with learning about an unobserved, time–varying

inflation target of the central bank. Similarly, recent research for other countries has found

that related Bayesian methods for centering forecasts around an explicit inflation target (see,

e.g., Adolfson, et al. (2007)) improves forecast accuracy.

However, such a single representation is surely not the true model, and noise in estimat-

ing the many parameters of the model likely have an adverse effect on forecast accuracy.

Therefore, a better forecast can be obtained by applying some form of shrinkage. One ap-

proach, which primarily addresses parameter estimation noise, is to use Bayesian shrinkage

in estimating the VAR with inflation detrending. Another approach is to combine forecasts

from the inflation-detrended VAR with forecasts from an alternative model — in our case,

the univariate benchmark (note that the IMA(1) benchmarks for inflation and the T-bill rate

imply random walk trends). Koop and Potter (2004) note that such model averaging can

be viewed as a form of shrinkage for addressing both parameter estimation noise and model
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uncertainty. The superiority of this average forecast can be interpreted as highlighting the

value of inflation detrending, shrinkage of parameter noise, and shrinkage to deal with model

uncertainty.

5 Conclusion

In this paper we consider a wide range of approaches to averaging VAR forecasts obtained

with a variety of primitive methods for managing model instability. Our results indicate that

some forms of model averaging consistently improve forecast accuracy. The simplest forms

of model averaging — such as those that use equal weights across all models — consistently

perform among the best methods.

For forecasting U.S. aggregates today, our results suggest a practical forecaster should put

considerable weight on univariate forecasts and pay close attention to trends or low-frequency

movements in inflation and interest rates. Our best forecast does both: it simply averages

projections from a univariate model and a VAR with inflation and the interest rate centered

around an inflation trend that approximates long-run inflation expectations.
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Table 1: VAR forecasting methods

method details

VAR(4) VAR in y, π, i with fixed lag of 4
VAR(2) same as above with fixed lag of 2
VAR(AIC) VAR with lag determined by AIC
VAR(BIC) VAR with lag determined by BIC
VAR(AIC, by eq.&var.) VAR in y, π, i with AIC-based lags for each variable in each equation
VAR(BIC, by eq.&var.) same as above, with BIC-determined lags
DVAR(4) VAR in y, ∆π, ∆i with fixed lag of 4
DVAR(2) same as above with fixed lag of 2
DVAR(AIC) VAR in y, ∆π, ∆i with lag determined by AIC
DVAR(BIC) VAR in y, ∆π, ∆i with lag determined by BIC
DVAR(AIC, by eq.&var.) VAR in y, ∆π, ∆i with AIC-based lags for each variable in each equation
DVAR(BIC, by eq.&var.) same as above, with BIC-determined lags
BVAR(4) VAR(4) in y, π, i, est. with Minnesota priors
BDVAR(4) VAR(4) in y, ∆π, ∆i, est. with Minnesota priors
VAR(4), rolling VAR in y, π, i with fixed lag of 4, estimated with a rolling sample
VAR(2), rolling same as above with fixed lag of 2
VAR(AIC), rolling same as above with AIC–determined lag
VAR(BIC), rolling same as above with BIC–determined lag
VAR(AIC, by eq.&var.), rolling same as above with AIC-determined lags for each var. in each eq.
VAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags for each var. in each eq.
DVAR(4), rolling VAR in y, ∆π, ∆i with fixed lag of 4, estimated with a rolling sample
DVAR(2), rolling same as above with fixed lag of 2
DVAR(AIC), rolling same as above with AIC–determined lag
DVAR(BIC), rolling same as above with BIC–determined lag
DVAR(AIC, by eq.&var.), rolling same as above with AIC-determined lags for each var. in each eq.
DVAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags for each var. in each eq.
BVAR(4), rolling BVAR(4) in y, π, i, est. with a rolling sample
BDVAR(4), rolling BVAR(4) in y, ∆π, ∆i, est. with a rolling sample
DLS, VAR(4) VAR(4) in y, π, i, est. by DLS
DLS, VAR(2) same as above with fixed lag of 2
DLS, VAR(AIC) same as above with lag from VAR(AIC) system
DLS, DVAR(4) VAR(4) in y, ∆π, ∆i, est. by DLS
DLS, DVAR(2) same as above with fixed lag of 2
DLS, DVAR(AIC) same as above with lag from VAR(AIC) system
VAR(AIC), AIC intercept breaks VAR(AIC lags) in y, π, i, with intercept breaks chosen by AIC
VAR(AIC), BIC intercept breaks same as above, using the BIC to determine intercept breaks
VAR(4), intercept correction VAR(4) forecasts adjusted by the average of the last 4 residuals
VAR(AIC), intercept correction VAR(AIC lag) forecasts adjusted by the average of the last 4 residuals
VAR(4), inflation detrending VAR(4) in y, π − π∗

−1
, and i− π∗

−1
, where π∗ = π∗

−1
+ .05(π − π∗

−1
)

VAR(2), inflation detrending same as above with fixed lag of 2
VAR(AIC), inflation detrending same as above with AIC–determined lag for the detrended system
VAR(BIC), inflation detrending same as above with BIC–determined lag for the detrended system
BVAR(4), inflation detrending BVAR(4) in y, π − π∗

−1
, and i− π∗

−1

BVAR(4) with TVP TVP BVAR(4) in y, π, i with λ4 = .1, λ = .0005
BVAR(4) with TVP, λ4 = .5, λ = .0025 TVP BVAR(4) in y, π, i with λ4 = .5, λ = .0025
BVAR(4) with TVP, λ4 = 1000, λ = .005 TVP BVAR(4) in y, π, i with λ4 = 1000, λ = .005
BVAR(4) with TVP, λ4 = 1000, λ = .0001 TVP BVAR(4) in y, π, i with λ4 = 1000, λ = .0001
BVAR(4) with intercept TVP BVAR(4) in y, π, i, TVP in intercepts, with λ4 = .1, λ = .0005
BVAR(4) with intercept TVP, λ4 = .5, λ = .0025 BVAR(4) in y, π, i, TVP in intercepts, with λ4 = .5, λ = .0025
univariate AR(2) for y, rolling MA(1) for ∆π, rolling MA(1) for ∆i

Notes:
1. Unless otherwise noted, all models are estimated recursively. The rolling estimates of the VAR models use 60
observations. The rolling estimates of the univariate models for ∆π and ∆i use 40 observations.
2. The AIC and BIC lag orders range from 0 to 4.
3. The intercept correction approach takes the form of equation (40) in Clements and Hendry (1996).
4. In BVAR estimates, prior variances take the “Minnesota” style described in Litterman (1986). The prior variances
are determined by hyperparameters λ1 (general tightness), λ2 (tightness of lags of other variables compared to lags of
the dependent variable), λ3 (tightness of longer lags compared to shorter lags), and λ4 (tightness of intercept). Unless
otherwise noted, we use generally conventional hyperparameter settings of λ1 = .2 , λ2 = .5, λ3 = 1, and λ4 = 1000.
The prior means for all coefficients are generally set at 0, with the following exceptions: (a) prior means for own first
lags of π and i are set at 1 (in models with levels of inflation and interest rates); (b) prior means for own first lags of
y are set at 0.8 in models with an output gap; and (c) prior means for the intercept of GDP growth equations are set
to the historical average of growth in BVAR estimates that impose informative priors (λ4 = .1 or .5) on the constant
term.
5. In DLS estimation, we use discount rates of .01 output equations and .05 for inflation and interest rate equations.
6. The time variation in the coefficients of the TVP BVARs takes a random walk form. The variance matrix of the
coefficient innovations is set to λ times the Minnesota prior variance matrix. In time–varying BVARs with flat priors
on the intercepts (λ4 = 1000), the variation of the innovation in the intercept is set at λ times the prior variance of
the coefficient on the own first lag instead of the prior variance of the constant.
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Table 2: Forecast averaging methods

method details

avg. of VAR(4), univariate average of forecasts from univariate model and VAR(4) in y, π, and i

avg. of infl. detr. VAR(4), univariate average of forecasts from univariate model and VAR(4) in y, π − π∗

−1
, and i− π∗

−1

avg. of DVAR(4), univariate average of forecasts from univariate model and VAR(4) in ∆y, ∆π, and i

avg. of VAR(4), rolling VAR(4) average of forecasts from recursive and rolling estimates of VAR(4) in y, π, and i

average of all forecasts simple average of forecasts from models listed in Table 1
median median of model forecasts
trimmed mean, 10% average of model forecasts, excluding 3 highest and 3 lowest
trimmed mean, 20% average of model forecasts, excluding 5 highest and 5 lowest
ridge: recursive, .001 combination of model forecasts, est. with ridge regression (1), k = .001
ridge: recursive, .25 same as above, using k = .25
ridge: recursive, 1. same as above, using k = 1
ridge: 10y rolling, .001 same as above, using k = .001 and a rolling window of 40 forecasts
ridge: 10y rolling, .25 same as above, using k = .25 and a rolling window of 40 forecasts
ridge: 10y rolling, 1. same as above, using k = 1 and a rolling window of 40 forecasts
factor, recursive forecast from regression on common factor in model forecasts
factor, 10y rolling same as above, using rolling window of 40 forecasts
MSE weighting, recursive inverse MSE–weighted average of model forecasts
MSE weighting, 10y rolling same as above, using a rolling window of 40 forecasts
MSE weighting, 5y rolling same as above, using a rolling window of 20 forecasts
MSE weighting, discounted inverse discounted MSE–weighted average of model forecasts, with discount rate of .95
PLS, recursive forecast from model with lowest historical MSE
PLS, 10y rolling same as above, using a rolling window of 40 forecasts
PLS, 5y rolling same as above, using a rolling window of 20 forecasts
best quartile, recursive simple average of model forecasts in the top quartile of historical (MSE) accuracy
best quartile, 10y rolling same as above, using a rolling window of 40 forecasts
best quartile, 5y rolling same as above, using a rolling window of 20 forecasts
OLS comb. of quartiles, recursive forecast from (OLS) regression on the avg. forecasts from the 1st and 2nd quartiles
OLS comb. of quartiles, 10y rolling same as above, using a rolling window of 40 forecasts
OLS comb. of quartiles, 5y rolling same as above, using a rolling window of 20 forecasts
BMA: AIC BMA of model forecasts, using AIC as measure of marginal likelihood
BMA: BIC BMA of model forecasts, using BIC as measure of marginal likelihood
BMA: PIC BMA of model forecasts, using Phillips’ (1996) PIC as measure of marginal likelihood

Notes:
1. All averages are based on the 50 forecast models listed in Table 1, for a given combination of measures of output,
inflation, and the short-term interest rate.
2. See the notes to Table 1.

26



T
a
b
le

3
:

R
e
a
l-
t
im

e
R

M
S
E

r
e
s
u
lt
s

fo
r

G
D

P
g
r
o
w

t
h

a
n
d

G
D

P
in

fl
a
t
io

n

(R
M

S
E
s

in
fi
rs

t
ro

w
,
R

M
S
E

ra
ti
o
s

in
a
ll

o
th

er
s)

G
D

P
g
r
o
w

t
h

fo
r
e
c
a
s
t
s

G
D

P
in

fl
a
t
io

n
fo

r
e
c
a
s
t
s

1
9
7
0
-8

4
1
9
8
5
-2

0
0
5

1
9
7
0
-8

4
1
9
8
5
-2

0
0
5

fo
r
e
c
a
s
t

m
e
t
h
o
d

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

u
n
iv

a
ri

a
te

4
.5

5
0

5
.0

2
3

3
.6

3
3

1
.7

5
5

1
.8

2
6

1
.3

6
7

1
.9

1
1

2
.2

4
2

2
.4

6
6

.9
8
9

1
.0

5
2

.7
4
3

V
A

R
(4

)
1
.0

6
3

.9
4
9

.9
4
0

1
.1

1
5

1
.1

2
8

1
.0

5
1

.9
9
4

1
.0

1
4

1
.0

6
6

1
.0

0
0

.9
4
4

.9
3
6

D
V
A

R
(4

)
1
.0

3
5

.9
2
8

.7
6
1

1
.2

1
9

1
.2

5
2

1
.0

8
6

.9
9
8

.9
4
1

.9
0
1

.9
9
6

.9
5
6

1
.0

1
1

B
V
A

R
(4

)
.9

5
8

.9
2
1

.9
7
5

1
.0

3
0

1
.0

3
4

.9
7
9

.9
5
6

1
.0

4
9

1
.0

9
6

1
.0

1
6

1
.0

1
2

1
.1

4
6

B
V
A

R
(4

)
w

it
h

T
V

P
.9

5
7

.9
3
0

.9
7
0

.9
9
5

.9
8
7

.9
1
9

.9
6
3

1
.0

5
3

1
.1

0
6

1
.0

0
3

.9
7
7

1
.0

0
3

B
V
A

R
(4

),
in

fl
a
ti
o
n

d
et

re
n
d
in

g
.8

8
3

.8
3
0

.8
1
1

1
.0

6
7

1
.0

6
0

.9
3
7

1
.0

0
1

1
.0

6
3

1
.0

7
3

1
.0

1
0

1
.0

2
7

1
.2

8
7

a
v
g
.
o
f
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
8
6

.9
2
2

.8
9
3

1
.0

2
4

1
.0

2
1

.9
5
6

.9
5
6

.9
7
6

.9
9
9

.9
8
1

.9
5
7

.9
3
1

a
v
g
.
o
f
D

V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
5
5

.8
8
9

.7
9
5

1
.0

7
1

1
.0

8
0

.9
9
6

.9
6
5

.9
5
2

.9
3
4

.9
7
9

.9
6
1

.9
6
9

a
v
g
.
o
f
in

fl
.
d
et

r.
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
5
8

.8
9
4

.8
5
6

1
.0

1
7

1
.0

1
6

.9
1
8

.9
6
1

.9
7
2

.9
7
5

.9
8
6

.9
6
7

.9
7
0

a
v
g
.
o
f
V
A

R
(4

),
ro

ll
in

g
V
A

R
(4

)
1
.1

1
1

1
.0

0
5

.9
7
9

1
.1

1
0

1
.1

5
5

1
.1

3
4

.9
8
3

1
.0

2
9

1
.0

6
4

1
.0

4
0

.9
9
7

1
.1

2
3

a
v
er

a
g
e

o
f
a
ll

fo
re

ca
st

s
.9

4
4

.8
7
7

.8
3
6

1
.0

4
9

1
.0

6
0

.9
6
2

.9
3
3

.9
9
2

.9
7
9

1
.0

2
3

.9
9
8

1
.0

3
6

m
ed

ia
n

.9
3
7

.8
7
9

.8
6
7

1
.0

4
2

1
.0

7
6

.9
9
1

.9
5
4

1
.0

1
2

1
.0

0
5

1
.0

1
7

.9
9
3

1
.0

1
6

tr
im

m
ed

m
ea

n
,
1
0
%

.9
4
6

.8
8
1

.8
4
4

1
.0

5
0

1
.0

6
1

.9
6
7

.9
4
0

.9
9
4

.9
8
5

1
.0

2
2

.9
9
3

1
.0

2
7

tr
im

m
ed

m
ea

n
,
2
0
%

.9
4
8

.8
8
4

.8
4
8

1
.0

5
0

1
.0

6
2

.9
7
2

.9
4
3

.9
9
6

.9
8
9

1
.0

2
1

.9
9
2

1
.0

2
3

ri
d
g
e:

re
cu

rs
iv

e,
.0

0
1

2
.1

6
9

1
.5

9
0

1
.5

8
9

1
.2

9
5

1
.3

5
3

1
.5

8
8

1
.2

5
4

1
.5

3
2

1
.8

6
7

1
.1

4
7

1
.1

0
1

1
.7

5
5

ri
d
g
e:

re
cu

rs
iv

e,
.2

5
.9

5
7

.8
7
6

.7
7
3

1
.0

7
7

1
.1

3
2

1
.0

1
5

.9
6
8

1
.0

4
4

1
.0

9
1

1
.0

2
0

.9
8
8

1
.0

3
9

ri
d
g
e:

re
cu

rs
iv

e,
1
.

.9
3
9

.8
5
9

.7
7
3

1
.0

7
3

1
.1

2
5

.9
9
4

.9
6
3

1
.0

3
9

1
.0

8
7

1
.0

1
8

.9
8
4

.9
8
1

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.0

0
1

2
.3

3
2

1
.8

7
1

1
.6

9
3

1
.5

6
3

1
.7

6
2

1
.7

2
2

1
.2

1
9

1
.5

1
7

1
.8

8
9

1
.1

7
7

1
.1

7
4

1
.7

1
3

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.2

5
.9

6
8

.8
8
1

.7
9
1

1
.0

8
0

1
.1

2
6

1
.0

8
1

.9
6
7

1
.0

3
6

1
.0

7
7

1
.0

2
7

.9
7
9

1
.0

5
0

ri
d
g
e:

1
0
y

ro
ll
in

g
,
1
.

.9
4
4

.8
6
1

.7
8
4

1
.0

7
7

1
.1

1
7

1
.0

2
1

.9
6
2

1
.0

3
2

1
.0

7
5

1
.0

2
3

.9
8
3

.9
9
7

fa
ct

o
r,

re
cu

rs
iv

e
.9

8
7

.9
3
0

.9
2
9

1
.0

9
5

1
.1

1
1

1
.0

2
1

1
.0

0
6

1
.0

8
7

.9
9
2

1
.0

3
1

1
.0

7
3

1
.5

3
6

fa
ct

o
r,

1
0
y

ro
ll
in

g
.9

9
3

.9
3
6

.9
3
5

1
.1

1
2

1
.1

0
8

1
.0

9
3

1
.0

2
1

1
.1

2
4

1
.0

3
9

1
.0

1
8

1
.0

1
1

1
.4

1
9

M
S
E

w
ei

g
h
ti
n
g
,
re

cu
rs

iv
e

.9
4
3

.8
7
6

.8
2
4

1
.0

4
6

1
.0

5
8

.9
5
7

.9
3
5

.9
9
2

.9
8
4

1
.0

2
2

.9
9
6

1
.0

2
8

M
S
E

w
ei

g
h
ti
n
g
,
1
0
y

ro
ll
in

g
.9

4
3

.8
7
7

.8
2
5

1
.0

4
6

1
.0

5
7

.9
5
2

.9
3
5

.9
9
2

.9
8
4

1
.0

2
2

.9
9
4

1
.0

2
9

M
S
E

w
ei

g
h
ti
n
g
,
5
y

ro
ll
in

g
.9

4
1

.8
7
5

.8
3
1

1
.0

4
4

1
.0

5
6

.9
5
7

.9
3
4

.9
8
9

.9
7
4

1
.0

2
3

.9
9
8

1
.0

2
6

M
S
E

w
ei

g
h
ti
n
g
,
d
is

co
u
n
te

d
.9

4
3

.8
7
7

.8
2
9

1
.0

4
5

1
.0

5
7

.9
5
8

.9
3
4

.9
9
0

.9
8
1

1
.0

2
2

.9
9
5

1
.0

2
3

P
L
S
,
re

cu
rs

iv
e

.9
7
3

.9
1
5

.8
0
6

1
.1

0
6

1
.0

9
4

1
.1

0
8

.9
9
3

1
.0

7
1

1
.2

0
3

.9
8
0

.9
7
8

1
.0

1
1

P
L
S
,
1
0
y

ro
ll
in

g
.9

7
3

.9
1
5

.8
1
0

1
.0

9
2

1
.1

5
1

1
.0

4
0

1
.0

4
3

1
.0

4
8

1
.2

5
3

1
.0

3
6

.9
6
3

1
.0

9
2

P
L
S
,
5
y

ro
ll
in

g
1
.0

2
3

.9
3
3

.8
2
8

1
.1

0
3

1
.1

2
1

1
.0

7
4

1
.0

5
2

1
.0

8
6

1
.3

0
1

1
.1

1
3

1
.0

0
9

1
.1

3
2

b
es

t
q
u
a
rt

il
e,

re
cu

rs
iv

e
.9

4
3

.8
7
9

.7
7
8

1
.0

2
8

1
.0

6
3

.9
4
0

.9
4
6

.9
9
4

1
.0

0
2

1
.0

1
5

.9
8
2

1
.0

5
9

b
es

t
q
u
a
rt

il
e,

1
0
y

ro
ll
in

g
.9

5
1

.8
8
4

.7
8
4

1
.0

4
6

1
.0

6
1

.9
6
2

.9
4
5

.9
8
8

1
.0

1
1

1
.0

1
1

.9
7
7

1
.0

1
9

b
es

t
q
u
a
rt

il
e,

5
y

ro
ll
in

g
.9

3
5

.8
7
8

.8
2
3

1
.0

4
2

1
.0

8
8

1
.0

2
0

.9
3
8

.9
7
7

.9
7
0

1
.0

3
0

.9
8
4

1
.0

1
8

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
re

cu
rs

iv
e

.9
7
8

.9
1
7

.9
1
0

1
.1

6
9

1
.1

5
0

.9
4
0

1
.0

0
4

1
.0

3
9

1
.0

9
5

1
.0

3
4

.9
9
2

1
.3

9
6

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
1
0
y

ro
ll
in

g
.9

7
6

.9
2
8

.9
2
7

1
.0

9
0

1
.1

1
4

1
.0

2
6

1
.0

2
2

1
.0

8
1

1
.1

6
3

1
.0

2
0

.9
3
9

1
.3

2
8

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
5
y

ro
ll
in

g
.9

6
8

.9
1
4

.9
5
1

1
.2

6
8

1
.4

1
3

1
.5

5
7

1
.0

1
4

1
.1

3
5

1
.3

7
0

1
.0

8
3

1
.1

1
6

1
.0

2
5

B
M

A
:
A

IC
1
.0

0
8

.9
6
6

.9
0
1

1
.1

2
0

1
.1

0
6

.9
7
8

.9
9
1

1
.0

2
3

1
.0

5
3

1
.1

1
3

1
.1

2
6

1
.5

0
2

B
M

A
:
B

IC
.9

4
6

.9
0
9

.9
6
4

1
.0

4
7

1
.0

3
8

.8
9
8

.9
7
2

1
.0

0
4

.9
9
1

1
.0

1
4

1
.0

0
4

1
.0

0
5

B
M

A
:
P

IC
.9

0
2

.8
3
7

.8
4
9

1
.1

0
0

1
.0

8
7

.9
2
6

.9
6
2

1
.0

4
6

1
.0

7
5

1
.0

8
0

1
.0

8
2

1
.1

2
8

N
o
t
e
s
:

1
.

T
h
e

e
n
tr

ie
s

in
th

e
fi
rs

t
ro

w
a
re

R
M

S
E

s,
fo

r
v
a
ri
a
b
le

s
d
e
fi
n
e
d

in
a
n
n
u
a
li
z
e
d

p
e
rc

e
n
ta

g
e

p
o
in

ts
.

A
ll

o
th

e
r

e
n
tr

ie
s

a
re

R
M

S
E

ra
ti
o
s,

fo
r

th
e

in
d
ic

a
te

d
sp

e
c
ifi

c
a
ti
o
n

re
la

ti
v
e

to
th

e
c
o
rr

e
sp

o
n
d
in

g
u
n
iv

a
ri

a
te

sp
e
c
ifi

c
a
ti
o
n
.

2
.

In
d
iv

id
u
a
l
R

M
S
E

ra
ti
o
s

th
a
t

a
re

si
g
n
ifi

c
a
n
tl
y

b
e
lo

w
1

a
c
c
o
rd

in
g

to
b
o
o
ts

tr
a
p

p
–
v
a
lu

e
s

a
re

in
d
ic

a
te

d
b
y

a
s
la

n
t
e
d

fo
n
t.

In
e
a
ch

c
o
lu

m
n
,
if

a
fo

re
c
a
st

is
si

g
n
ifi

c
a
n
tl
y

b
e
tt

e
r

(i
n

M
S
E

)
th

a
n

th
e

b
e
n
ch

m
a
rk

a
c
c
o
rd

in
g

to
d
a
ta

sn
o
o
p
in

g
–
ro

b
u
st

p
–
v
a
lu

e
s

(b
o
o
ts

tr
a
p
p
e
d

a
s

in
H

a
n
se

n
(2

0
0
5
))

,
th

e
a
ss

o
c
ia

te
d

R
M

S
E

ra
ti
o

a
p
p
e
a
rs

in
a

b
o
l
d

fo
n
t.

3
.

In
e
a
ch

q
u
a
rt

e
r

t
fr

o
m

1
9
7
0
:Q

1
th

ro
u
g
h

2
0
0
5
:Q

4
,
v
in

ta
g
e

t
d
a
ta

(w
h
ic

h
g
e
n
e
ra

ll
y

e
n
d

in
t
−

1
)

a
re

u
se

d
to

fo
rm

fo
re

c
a
st

s
fo

r
p
e
ri
o
d
s

t
(h

=
0
Q

),
t
+

1
(h

=
1
Q

),
a
n
d

t
+

4
(h

=
1
Y

).
T

h
e

fo
re

c
a
st

s
o
f

G
D

P
g
ro

w
th

a
n
d

in
fl
a
ti
o
n

fo
r

th
e

h
=

1
Y

h
o
ri
z
o
n

c
o
rr

e
sp

o
n
d

to
a
n
n
u
a
l
p
e
rc

e
n
t

ch
a
n
g
e
s:

a
v
e
ra

g
e

g
ro

w
th

a
n
d

a
v
e
ra

g
e

in
fl
a
ti
o
n

fr
o
m

t
+

1
th

ro
u
g
h

t
+

4
.

4
.

T
a
b
le

s
1

a
n
d

2
p
ro

v
id

e
fu

rt
h
e
r

d
e
ta

il
o
n

th
e

fo
re

c
a
st

m
e
th

o
d
s.

27



T
a
b
le

4
:

R
e
a
l-
t
im

e
R

M
S
E

r
e
s
u
lt
s

fo
r

G
D

P
g
r
o
w

t
h

a
n
d

C
P

I
in

fl
a
t
io

n

(R
M

S
E
s

in
fi
rs

t
ro

w
,
R

M
S
E

ra
ti
o
s

in
a
ll

o
th

er
s)

G
D

P
g
r
o
w

t
h

fo
r
e
c
a
s
t
s

C
P

I
in

fl
a
t
io

n
fo

r
e
c
a
s
t
s

1
9
7
0
-8

4
1
9
8
5
-2

0
0
5

1
9
7
0
-8

4
1
9
8
5
-2

0
0
5

fo
r
e
c
a
s
t

m
e
t
h
o
d

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

u
n
iv

a
ri

a
te

4
.5

5
0

5
.0

2
3

3
.6

3
3

1
.7

5
5

1
.8

2
6

1
.3

6
7

2
.1

1
7

2
.7

3
3

2
.9

7
0

1
.3

4
0

1
.4

6
0

1
.2

5
4

V
A

R
(4

)
1
.0

7
2

.9
7
6

.9
3
4

1
.1

1
0

1
.1

1
9

1
.0

6
4

.8
5
7

.9
4
9

.9
9
3

.9
8
6

1
.0

3
7

1
.0

7
7

D
V
A

R
(4

)
1
.0

7
9

.9
5
7

.7
6
8

1
.2

1
1

1
.2

3
2

1
.0

9
9

.8
4
7

.8
8
8

.8
5
4

.9
6
3

1
.0

1
2

1
.0

9
5

B
V
A

R
(4

)
.9

5
5

.9
1
4

.9
3
7

1
.0

2
7

1
.0

2
7

.9
6
5

.9
2
5

1
.0

3
3

1
.1

0
6

.9
9
7

.9
8
7

1
.0

0
1

B
V
A

R
(4

)
w

it
h

T
V

P
.9

5
3

.9
2
5

.9
4
3

.9
9
3

.9
9
1

.9
3
5

.9
1
4

1
.0

1
5

1
.0

8
6

.9
8
6

.9
6
6

.9
3
6

B
V
A

R
(4

),
in

fl
a
ti
o
n

d
et

re
n
d
in

g
.8

6
9

.8
1
0

.7
7
7

1
.1

5
2

1
.1

5
1

1
.0

8
7

.9
4
4

1
.0

1
3

1
.0

3
3

.9
7
5

.9
8
6

1
.0

6
1

a
v
g
.
o
f
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
9
3

.9
3
4

.8
7
5

1
.0

2
2

1
.0

1
6

.9
6
4

.8
6
3

.9
1
2

.9
1
6

.9
6
5

.9
9
3

.9
9
6

a
v
g
.
o
f
D

V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
8
0

.9
1
5

.8
0
6

1
.0

6
8

1
.0

7
1

1
.0

0
3

.8
6
2

.8
9
8

.8
9
4

.9
5
1

.9
8
3

1
.0

1
3

a
v
g
.
o
f
in

fl
.
d
et

r.
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
6
0

.8
9
5

.8
1
8

1
.0

3
8

1
.0

3
8

.9
8
3

.8
5
7

.8
9
5

.8
6
3

.9
6
8

.9
9
9

1
.0

1
9

a
v
g
.
o
f
V
A

R
(4

),
ro

ll
in

g
V
A

R
(4

)
1
.1

0
6

1
.0

2
5

.9
7
2

1
.1

6
2

1
.1

7
4

1
.1

3
7

.8
5
9

.9
7
9

1
.0

3
5

1
.0

2
1

1
.0

8
3

1
.1

4
3

a
v
er

a
g
e

o
f
a
ll

fo
re

ca
st

s
.9

4
7

.9
0
3

.8
3
9

1
.0

7
0

1
.0

7
6

.9
9
7

.8
2
6

.9
2
7

.9
5
0

.9
8
4

1
.0

1
2

1
.0

6
6

m
ed

ia
n

.9
4
5

.8
9
5

.8
7
1

1
.0

5
9

1
.0

7
4

1
.0

1
8

.8
6
3

.9
1
4

.9
4
0

.9
8
3

1
.0

0
0

1
.0

3
9

tr
im

m
ed

m
ea

n
,
1
0
%

.9
4
7

.9
0
4

.8
5
0

1
.0

7
0

1
.0

7
5

.9
9
9

.8
3
4

.9
2
5

.9
4
5

.9
8
1

1
.0

1
1

1
.0

5
3

tr
im

m
ed

m
ea

n
,
2
0
%

.9
4
7

.9
0
5

.8
5
5

1
.0

7
0

1
.0

7
5

1
.0

0
2

.8
4
0

.9
2
3

.9
4
4

.9
7
9

1
.0

0
7

1
.0

4
8

ri
d
g
e:

re
cu

rs
iv

e,
.0

0
1

1
.8

8
8

1
.3

3
7

1
.3

3
5

1
.2

2
9

1
.4

7
7

1
.3

0
1

1
.1

0
3

1
.3

7
4

2
.0

1
3

1
.1

1
3

1
.3

5
3

1
.4

5
8

ri
d
g
e:

re
cu

rs
iv

e,
.2

5
.9

5
1

.8
5
2

.7
8
0

1
.0

5
5

1
.0

9
6

.9
7
7

.8
4
5

.9
7
1

1
.0

8
1

.9
8
6

.9
9
7

1
.0

7
1

ri
d
g
e:

re
cu

rs
iv

e,
1
.

.9
4
6

.8
7
1

.7
9
9

1
.0

5
9

1
.0

8
5

.9
6
9

.8
4
5

.9
6
6

1
.0

7
4

.9
7
8

.9
9
2

1
.0

1
2

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.0

0
1

1
.9

2
3

1
.3

3
1

1
.4

2
2

1
.3

1
1

1
.6

6
5

1
.4

8
3

1
.0

5
6

1
.2

5
3

1
.9

2
9

1
.1

9
5

1
.5

9
3

1
.6

5
9

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.2

5
.9

6
5

.8
6
2

.7
9
6

1
.0

2
8

1
.0

9
0

1
.0

4
7

.8
4
0

.9
6
6

1
.0

6
7

.9
9
0

.9
9
9

1
.0

1
4

ri
d
g
e:

1
0
y

ro
ll
in

g
,
1
.

.9
4
9

.8
7
4

.8
0
3

1
.0

5
3

1
.0

9
3

1
.0

1
3

.8
4
0

.9
5
9

1
.0

6
3

.9
8
2

.9
9
3

.9
6
4

fa
ct

o
r,

re
cu

rs
iv

e
1
.0

0
3

.9
8
1

.9
1
3

1
.0

8
9

1
.0

9
3

1
.0

2
3

.8
3
3

.9
4
5

.9
5
1

.9
9
1

1
.0

6
1

1
.2

4
9

fa
ct

o
r,

1
0
y

ro
ll
in

g
1
.0

1
1

.9
9
1

.9
2
5

1
.1

0
1

1
.0

9
3

1
.0

8
7

.8
5
1

.9
7
7

.9
8
9

.9
5
7

1
.0

0
5

1
.1

3
4

M
S
E

w
ei

g
h
ti
n
g
,
re

cu
rs

iv
e

.9
4
7

.9
0
1

.8
3
0

1
.0

6
5

1
.0

7
3

.9
9
5

.8
3
0

.9
2
9

.9
5
1

.9
8
2

1
.0

0
7

1
.0

5
5

M
S
E

w
ei

g
h
ti
n
g
,
1
0
y

ro
ll
in

g
.9

4
8

.9
0
2

.8
3
1

1
.0

6
4

1
.0

7
4

.9
9
2

.8
3
0

.9
2
9

.9
5
0

.9
8
2

1
.0

0
7

1
.0

5
5

M
S
E

w
ei

g
h
ti
n
g
,
5
y

ro
ll
in

g
.9

4
6

.9
0
1

.8
4
5

1
.0

6
0

1
.0

7
3

.9
9
1

.8
2
8

.9
2
8

.9
4
9

.9
8
0

1
.0

0
5

1
.0

5
0

M
S
E

w
ei

g
h
ti
n
g
,
d
is

co
u
n
te

d
.9

4
8

.9
0
3

.8
3
6

1
.0

6
4

1
.0

7
3

.9
9
8

.8
2
8

.9
3
0

.9
5
3

.9
8
2

1
.0

0
6

1
.0

5
1

P
L
S
,
re

cu
rs

iv
e

.9
0
2

.8
5
0

.7
6
6

1
.1

9
1

1
.2

1
0

1
.0

9
2

.8
9
4

1
.0

8
1

.9
0
8

1
.0

0
5

1
.0

1
6

1
.1

8
3

P
L
S
,
1
0
y

ro
ll
in

g
.9

0
2

.8
4
2

.7
6
6

1
.1

4
1

1
.2

0
2

1
.0

9
2

.8
5
9

1
.0

7
7

.9
1
0

1
.0

0
5

1
.0

3
7

1
.0

7
8

P
L
S
,
5
y

ro
ll
in

g
.8

8
4

.8
4
9

.9
2
4

1
.1

3
1

1
.2

0
2

1
.1

1
3

.9
2
3

1
.1

0
6

.9
0
1

1
.0

2
0

1
.0

4
9

1
.0

6
6

b
es

t
q
u
a
rt

il
e,

re
cu

rs
iv

e
.9

3
8

.8
9
8

.7
7
3

1
.0

3
8

1
.0

6
9

.9
9
5

.8
6
8

.9
3
3

.9
2
2

.9
7
4

1
.0

1
0

1
.0

7
9

b
es

t
q
u
a
rt

il
e,

1
0
y

ro
ll
in

g
.9

4
3

.8
9
6

.7
8
0

1
.0

4
3

1
.0

6
4

1
.0

1
7

.8
6
7

.9
4
1

.9
2
8

.9
7
6

1
.0

0
4

1
.0

7
8

b
es

t
q
u
a
rt

il
e,

5
y

ro
ll
in

g
.9

6
6

.9
0
7

.8
1
6

1
.0

5
8

1
.0

8
5

1
.0

1
3

.8
3
8

.9
3
8

.9
6
1

.9
7
5

1
.0

1
4

1
.0

3
6

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
re

cu
rs

iv
e

.9
4
9

.9
4
2

.7
7
8

1
.1

8
6

1
.2

7
5

.9
0
4

.8
9
5

.9
6
0

.9
4
5

.9
6
8

1
.0

1
9

1
.0

7
1

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
1
0
y

ro
ll
in

g
.9

6
3

.9
5
5

.8
1
4

1
.0

4
1

1
.1

2
5

1
.0

7
4

.8
7
6

1
.0

3
2

.9
7
0

.9
6
4

1
.0

2
6

1
.1

2
5

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
5
y

ro
ll
in

g
1
.0

9
4

.9
6
6

.8
9
3

1
.3

0
9

1
.3

5
0

1
.7

0
9

.7
7
9

1
.0

5
9

2
.3

3
1

.9
9
5

1
.0

5
8

1
.1

1
0

B
M

A
:
A

IC
.9

2
1

.8
7
9

.9
1
4

1
.1

5
4

1
.1

9
0

1
.1

4
7

.8
9
8

1
.0

1
4

1
.0

5
6

.9
9
1

1
.0

5
7

1
.1

5
4

B
M

A
:
B

IC
.9

5
9

.8
6
7

.8
8
7

1
.0

5
5

1
.0

7
7

1
.0

2
4

.8
7
8

.9
6
2

1
.0

0
3

.9
7
8

1
.0

2
7

1
.1

0
3

B
M

A
:
P

IC
.8

7
3

.7
9
6

.8
1
2

1
.1

2
0

1
.1

4
8

1
.1

3
2

.9
1
0

1
.0

7
6

1
.1

5
7

1
.0

0
7

1
.0

1
0

1
.0

3
0

N
o
t
e
s
:

1
.

T
h
e

v
a
ri
a
b
le

s
in

e
a
c
h

m
u
lt
iv

a
ri
a
te

m
o
d
e
l
a
re

G
D

P
g
ro

w
th

,
C

P
I

in
fl
a
ti
o
n
,
a
n
d

th
e

T
-b

il
l
ra

te
.

2
.

S
e
e

th
e

n
o
te

s
to

T
a
b
le

3
.

28



T
a
b
le

5
:

R
e
a
l-
t
im

e
R

M
S
E

r
e
s
u
lt
s

fo
r

t
h
e

T
-b

il
l
r
a
t
e
,
fr

o
m

m
o
d
e
ls

w
it
h

G
D

P
g
r
o
w

t
h

a
n
d

G
D

P
in

fl
a
t
io

n

(R
M

S
E
s

in
fi
rs

t
ro

w
,
R

M
S
E

ra
ti
o
s

in
a
ll

o
th

er
s)

1
9
7
0
-8

4
1
9
8
5
-2

0
0
5

fo
r
e
c
a
s
t

m
e
t
h
o
d

h
=

0
Q

h
=

1
Q

h
=

1
Y

h
=

0
Q

h
=

1
Q

h
=

1
Y

u
n
iv

a
ri

a
te

1
.3

0
5

2
.0

9
8

2
.8

2
1

.3
7
8

.7
7
8

1
.6

2
5

V
A

R
(4

)
.9

4
0

.9
5
4

1
.1

0
8

1
.0

8
4

1
.0

2
7

.8
9
2

D
V
A

R
(4

)
.9

3
3

.9
1
7

.9
8
1

1
.1

3
7

1
.1

3
1

1
.0

8
3

B
V
A

R
(4

)
.9

4
9

.9
2
6

1
.0

2
7

1
.0

6
7

.9
8
6

.9
0
7

B
V
A

R
(4

)
w

it
h

T
V

P
.9

4
9

.9
3
3

1
.0

5
4

1
.0

7
8

1
.0

0
6

.9
4
4

B
V
A

R
(4

),
in

fl
a
ti
o
n

d
et

re
n
d
in

g
.9

3
0

.8
6
0

.9
0
8

1
.1

5
0

1
.0

2
2

.8
9
2

a
v
g
.
o
f
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
3
4

.9
3
0

1
.0

3
0

.9
8
8

.9
6
6

.9
2
5

a
v
g
.
o
f
D

V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
3
1

.9
0
9

.9
6
6

1
.0

2
7

1
.0

3
6

1
.0

3
2

a
v
g
.
o
f
in

fl
.
d
et

r.
V
A

R
(4

),
u
n
iv

a
ri

a
te

.9
2
4

.9
1
0

.9
6
4

.9
8
2

.9
5
7

.9
0
8

a
v
g
.
o
f
V
A

R
(4

),
ro

ll
in

g
V
A

R
(4

)
.9

6
7

.9
9
5

1
.1

9
8

1
.1

8
2

1
.0

9
8

.9
3
4

a
v
er

a
g
e

o
f
a
ll

fo
re

ca
st

s
.9

1
1

.9
2
7

1
.0

1
8

1
.0

3
4

.9
8
9

.9
4
4

m
ed

ia
n

.9
2
8

.9
4
2

.9
9
4

1
.0

3
3

.9
8
9

.9
4
6

tr
im

m
ed

m
ea

n
,
1
0
%

.9
1
1

.9
2
4

1
.0

0
7

1
.0

3
1

.9
8
6

.9
4
7

tr
im

m
ed

m
ea

n
,
2
0
%

.9
1
6

.9
2
4

1
.0

0
6

1
.0

3
0

.9
8
6

.9
4
8

ri
d
g
e:

re
cu

rs
iv

e,
.0

0
1

.9
8
1

.8
2
1

1
.8

2
1

1
.1

1
4

1
.1

8
8

1
.1

5
1

ri
d
g
e:

re
cu

rs
iv

e,
.2

5
.9

5
5

.9
6
6

1
.1

2
8

1
.0

3
1

.9
8
5

.9
3
6

ri
d
g
e:

re
cu

rs
iv

e,
1
.

.9
4
2

.9
6
4

1
.1

3
6

1
.0

3
7

.9
9
1

.9
3
2

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.0

0
1

1
.1

2
4

.9
5
4

1
.7

1
3

1
.0

3
7

1
.1

1
8

1
.1

2
6

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.2

5
.9

7
0

.9
8
8

1
.1

6
8

1
.0

2
8

.9
7
7

.9
0
3

ri
d
g
e:

1
0
y

ro
ll
in

g
,
1
.

.9
5
2

.9
7
9

1
.1

6
5

1
.0

3
3

.9
7
8

.8
8
9

fa
ct

o
r,

re
cu

rs
iv

e
.9

6
0

.9
5
7

1
.1

8
2

1
.1

3
9

1
.1

2
9

1
.1

0
8

fa
ct

o
r,

1
0
y

ro
ll
in

g
.9

6
4

.9
5
7

1
.2

5
0

1
.2

1
3

1
.2

0
7

1
.3

0
8

M
S
E

w
ei

g
h
ti
n
g
,
re

cu
rs

iv
e

.9
1
7

.9
2
6

1
.0

0
8

1
.0

3
6

.9
9
0

.9
4
2

M
S
E

w
ei

g
h
ti
n
g
,
1
0
y

ro
ll
in

g
.9

1
9

.9
2
8

1
.0

0
9

1
.0

3
0

.9
8
8

.9
4
4

M
S
E

w
ei

g
h
ti
n
g
,
5
y

ro
ll
in

g
.9

2
2

.9
3
1

1
.0

1
1

1
.0

2
6

.9
8
6

.9
4
9

M
S
E

w
ei

g
h
ti
n
g
,
d
is

co
u
n
te

d
.9

2
1

.9
2
9

1
.0

1
3

1
.0

3
2

.9
8
9

.9
4
3

P
L
S
,
re

cu
rs

iv
e

.9
6
2

.9
8
5

.9
8
0

1
.1

0
4

.9
8
4

.9
1
1

P
L
S
,
1
0
y

ro
ll
in

g
1
.0

1
0

.9
5
5

1
.0

2
8

1
.0

8
0

.9
4
2

.9
2
5

P
L
S
,
5
y

ro
ll
in

g
.9

9
8

1
.0

5
7

1
.3

1
0

1
.2

4
9

1
.0

8
6

1
.0

6
0

b
es

t
q
u
a
rt

il
e,

re
cu

rs
iv

e
.9

5
7

.9
4
0

.9
8
1

1
.0

5
2

1
.0

0
2

.9
5
0

b
es

t
q
u
a
rt

il
e,

1
0
y

ro
ll
in

g
.9

5
5

.9
4
8

.9
9
3

1
.0

2
4

.9
7
9

.9
4
4

b
es

t
q
u
a
rt

il
e,

5
y

ro
ll
in

g
.9

5
9

.9
7
7

1
.0

1
1

1
.0

6
2

1
.0

2
1

.9
8
4

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
re

cu
rs

iv
e

1
.0

3
2

.9
9
3

1
.2

9
2

1
.1

3
7

1
.1

6
8

1
.1

1
0

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
1
0
y

ro
ll
in

g
1
.0

8
9

1
.0

8
0

1
.4

0
4

1
.2

3
2

1
.2

0
5

1
.4

4
4

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
5
y

ro
ll
in

g
1
.1

1
0

1
.1

3
4

1
.2

5
5

1
.3

6
2

1
.5

3
7

1
.8

8
3

B
M

A
:
A

IC
1
.0

0
7

1
.0

5
4

1
.2

5
9

1
.4

3
4

1
.3

3
2

1
.1

3
8

B
M

A
:
B

IC
.9

5
8

1
.0

0
3

1
.0

3
8

1
.3

1
6

1
.1

9
4

.9
9
5

B
M

A
:
P

IC
1
.0

4
2

1
.0

5
3

1
.1

3
9

1
.3

3
2

1
.2

5
0

1
.0

6
7

N
o
t
e
s
:

1
.

T
h
e

m
o
d
e
l
v
a
ri
a
b
le

s
a
re

G
D

P
g
ro

w
th

,
G

D
P

in
fl
a
ti
o
n
,
a
n
d

th
e

T
-b

il
l
ra

te
.

2
.

S
e
e

th
e

n
o
te

s
to

T
a
b
le

s
3

a
n
d

4
.

29



T
a
b
le

6
:

A
v
e
r
a
g
e

R
M

S
E

r
a
n
k
in

g
s

in
r
e
a
l-
t
im

e
fo

r
e
c
a
s
t
s

a
ll

a
ll

y
,
π

a
ll

y
a
ll

π
a
ll

i
a
ll

y
,
π

a
ll

y
,
π

a
ll

y
,
π

a
ll

y
,
π

a
ll

y
,
π

a
ll

y
,
π

7
0
-8

4
8
5
-0

5
h

=
0
Q

h
=

1
Q

h
=

1
Y

h
=

2
Y

a
v
g
.
o
f
in

fl
.
d
et

r.
V
A

R
(4

),
u
n
iv

a
r.

6
.4

8
.0

8
.9

7
.1

3
.3

1
0
.4

5
.5

1
1
.3

6
.2

7
.0

7
.5

a
v
g
.
o
f
V
A

R
(4

),
u
n
iv

a
ri

a
te

1
2
.0

1
3
.6

1
5
.8

1
1
.4

8
.9

1
7
.6

9
.5

1
4
.8

1
1
.4

1
3
.8

1
4
.3

M
S
E

w
ei

g
h
ti
n
g
,
re

cu
rs

iv
e

1
2
.0

1
2
.4

1
1
.7

1
3
.1

1
1
.3

1
1
.8

1
3
.0

1
3
.2

1
2
.6

1
2
.2

1
1
.5

M
S
E

w
ei

g
h
ti
n
g
,
1
0
y

ro
ll
in

g
1
2
.3

1
2
.8

1
2
.6

1
2
.9

1
1
.3

1
1
.8

1
3
.7

1
4
.0

1
3
.2

1
2
.4

1
1
.5

B
V
A

R
(4

),
in

fl
a
ti
o
n

d
et

re
n
d
in

g
1
2
.5

1
3
.8

8
.2

1
9
.4

9
.8

1
2
.8

1
4
.8

1
6
.2

1
4
.1

1
3
.8

1
0
.9

b
es

t
q
u
a
rt

il
e,

re
cu

rs
iv

e
1
2
.6

1
1
.8

1
0
.4

1
3
.1

1
4
.3

1
1
.0

1
2
.6

1
1
.6

1
1
.7

1
1
.8

1
2
.0

a
v
g
.
o
f
D

V
A

R
(4

),
u
n
iv

a
ri

a
te

1
2
.7

1
2
.1

1
4
.5

9
.6

1
3
.9

1
1
.6

1
2
.5

1
5
.5

1
0
.0

1
1
.0

1
1
.7

M
S
E

w
ei

g
h
ti
n
g
,
5
y

ro
ll
in

g
1
2
.7

1
2
.5

1
2
.8

1
2
.3

1
3
.1

1
0
.7

1
4
.4

1
2
.8

1
2
.9

1
2
.8

1
1
.6

M
S
E

w
ei

g
h
ti
n
g
,
d
is

co
u
n
te

d
1
2
.8

1
3
.0

1
3
.3

1
2
.7

1
2
.4

1
2
.5

1
3
.5

1
3
.4

1
3
.6

1
3
.1

1
1
.9

b
es

t
q
u
a
rt

il
e,

1
0
y

ro
ll
in

g
1
3
.2

1
2
.9

1
3
.2

1
2
.6

1
3
.9

1
1
.8

1
4
.0

1
4
.0

1
3
.0

1
2
.2

1
2
.4

tr
im

m
ed

m
ea

n
,
2
0
%

1
3
.8

1
4
.8

1
5
.5

1
4
.0

1
1
.9

1
5
.0

1
4
.6

1
5
.5

1
4
.6

1
4
.7

1
4
.3

tr
im

m
ed

m
ea

n
,
1
0
%

1
3
.9

1
4
.8

1
5
.0

1
4
.6

1
2
.2

1
4
.2

1
5
.4

1
5
.9

1
4
.6

1
4
.4

1
4
.3

a
v
er

a
g
e

o
f
a
ll

fo
re

ca
st

s
1
4
.5

1
5
.0

1
4
.8

1
5
.2

1
3
.4

1
3
.4

1
6
.6

1
5
.4

1
4
.8

1
4
.1

1
5
.7

m
ed

ia
n

1
5
.2

1
5
.7

1
7
.0

1
4
.4

1
4
.1

1
6
.3

1
5
.1

1
6
.2

1
4
.9

1
6
.0

1
5
.7

b
es

t
q
u
a
rt

il
e,

5
y

ro
ll
in

g
1
5
.9

1
4
.5

1
5
.8

1
3
.1

1
8
.9

1
2
.3

1
6
.6

1
4
.4

1
5
.1

1
4
.8

1
3
.5

ri
d
g
e:

1
0
y

ro
ll
in

g
,
1
.

1
6
.9

1
6
.8

1
7
.9

1
5
.8

1
7
.0

1
8
.4

1
5
.2

1
5
.6

1
4
.9

1
5
.2

2
1
.5

u
n
iv

a
ri

a
te

1
7
.3

1
7
.8

1
6
.7

1
8
.9

1
6
.1

2
1
.8

1
3
.9

1
8
.0

1
8
.1

2
0
.1

1
5
.2

B
V
A

R
(4

)
w

it
h

T
V

P
1
8
.2

1
8
.7

1
5
.2

2
2
.1

1
7
.2

2
6
.0

1
1
.3

1
6
.9

1
7
.4

2
0
.6

1
9
.8

ri
d
g
e:

re
cu

rs
iv

e,
1
.

1
8
.3

1
8
.3

1
7
.8

1
8
.7

1
8
.3

1
8
.6

1
7
.9

1
6
.0

1
7
.5

1
6
.3

2
3
.2

P
L
S
,
re

cu
rs

iv
e

1
8
.5

2
0
.1

2
0
.1

2
0
.1

1
5
.4

1
8
.7

2
1
.6

2
0
.0

2
1
.6

1
9
.7

1
9
.1

B
V
A

R
(4

)
1
8
.6

2
2
.0

2
0
.8

2
3
.2

1
1
.8

2
7
.0

1
7
.0

2
0
.3

1
9
.6

2
3
.9

2
4
.1

D
V
A

R
(4

)
1
9
.4

1
8
.2

2
1
.4

1
5
.0

2
1
.8

1
4
.4

2
2
.1

2
4
.9

2
1
.1

1
4
.5

1
2
.4

P
L
S
,
1
0
y

ro
ll
in

g
1
9
.6

2
0
.9

1
9
.9

2
1
.9

1
7
.1

1
9
.1

2
2
.6

2
5
.1

2
0
.6

1
9
.4

1
8
.5

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.2

5
2
0
.0

2
0
.7

2
1
.3

2
0
.1

1
8
.7

2
2
.1

1
9
.3

1
7
.6

1
5
.5

2
1
.1

2
8
.5

ri
d
g
e:

re
cu

rs
iv

e,
.2

5
2
0
.9

2
2
.0

2
0
.3

2
3
.8

1
8
.7

2
1
.7

2
2
.4

1
8
.3

1
8
.4

2
1
.8

2
9
.6

B
M

A
:
B

IC
2
2
.0

1
9
.0

1
7
.5

2
0
.5

2
7
.9

2
0
.3

1
7
.8

1
7
.0

1
8
.1

2
0
.6

2
0
.4

V
A

R
(4

)
2
3
.0

2
4
.6

2
9
.2

2
0
.0

1
9
.8

2
8
.1

2
1
.1

2
5
.8

2
4
.0

2
4
.4

2
4
.3

P
L
S
,
5
y

ro
ll
in

g
2
5
.0

2
4
.4

2
1
.7

2
7
.2

2
6
.2

2
2
.1

2
6
.7

2
6
.9

2
6
.1

2
3
.7

2
1
.1

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
re

cu
rs

iv
e

2
5
.2

2
2
.9

2
2
.3

2
3
.5

2
9
.8

2
3
.1

2
2
.7

2
0
.2

2
4
.9

2
2
.1

2
4
.5

B
M

A
:
P

IC
2
5
.4

2
1
.9

2
0
.4

2
3
.5

3
2
.3

1
8
.8

2
5
.0

2
4
.4

2
3
.7

2
0
.9

1
8
.7

fa
ct

o
r,

re
cu

rs
iv

e
2
5
.9

2
5
.2

2
5
.1

2
5
.3

2
7
.2

2
2
.0

2
8
.4

2
3
.3

2
8
.3

2
6
.9

2
2
.1

fa
ct

o
r,

1
0
y

ro
ll
in

g
2
6
.7

2
5
.2

2
7
.1

2
3
.2

2
9
.8

2
4
.6

2
5
.8

2
0
.3

2
8
.1

2
8
.8

2
3
.6

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
1
0

y
ea

r
ro

ll
in

g
2
7
.8

2
5
.2

2
6
.1

2
4
.3

3
3
.2

2
5
.3

2
5
.1

2
0
.0

2
6
.2

2
6
.2

2
8
.4

B
M

A
:
A

IC
2
9
.0

2
6
.3

2
6
.3

2
6
.3

3
4
.3

2
3
.6

2
9
.0

2
7
.9

2
8
.6

2
6
.6

2
2
.0

a
v
g
.
o
f
V
A

R
(4

),
ro

ll
in

g
V
A

R
(4

)
2
9
.2

2
9
.8

3
1
.8

2
7
.9

2
8
.0

3
0
.0

2
9
.7

3
0
.3

2
9
.9

3
0
.4

2
8
.8

O
L
S

co
m

b
.
o
f
q
u
a
rt

il
es

,
5

y
ea

r
ro

ll
in

g
3
3
.0

3
1
.3

3
2
.2

3
0
.5

3
6
.3

3
0
.0

3
2
.7

2
9
.4

3
2
.0

3
1
.1

3
2
.8

ri
d
g
e:

re
cu

rs
iv

e,
.0

0
1

3
3
.7

3
5
.6

3
4
.3

3
6
.9

2
9
.9

3
5
.9

3
5
.3

3
2
.6

3
6
.3

3
6
.4

3
7
.1

ri
d
g
e:

1
0
y

ro
ll
in

g
,
.0

0
1

3
4
.8

3
6
.4

3
6
.1

3
6
.7

3
1
.7

3
6
.1

3
6
.8

3
5
.9

3
7
.4

3
6
.0

3
6
.4

#
o
f
r
a
n
k
in

g
o
b
s
e
r
v
a
t
io

n
s

1
4
4

9
6

4
8

4
8

4
8

4
8

4
8

2
4

2
4

2
4

2
4

N
o
t
e
s
:

1
.

T
h
e

ta
b
le

re
p
o
rt

s
a
v
e
ra

g
e

R
M

S
E

ra
n
k
in

g
s

o
f

th
e

fu
ll

se
t

o
f

fo
re

c
a
st

m
e
th

o
d
s

o
r

m
o
d
e
ls

in
c
lu

d
e
d

in
T
a
b
le

s
3
-5

,
a
lo

n
g

w
it
h

u
n
re

p
o
rt

e
d

re
su

lt
s

fo
r

a
fo

re
c
a
st

h
o
ri
z
o
n

o
f

2
y
e
a
rs

(h
=

2
Y

).
T

h
e

a
v
e
ra

g
e

ra
n
k
in

g
s

in
th

e
fi
rs

t
c
o
lu

m
n

o
f

fi
g
u
re

s
a
re

c
a
lc

u
la

te
d
,
fo

r
e
a
ch

fo
re

c
a
st

m
e
th

o
d
,
a
c
ro

ss
a

to
ta

l
o
f
1
4
4

fo
re

c
a
st

s
o
f
o
u
tp

u
t

(3
m

e
a
su

re
s:

G
D

P
g
ro

w
th

,
H

P
S

g
a
p
,
H

P
g
a
p
),

in
fl
a
ti
o
n

(2
m

e
a
su

re
s:

G
D

P
in

fl
a
ti
o
n
,
C

P
I

in
fl
a
ti
o
n
),

a
n
d

in
te

re
st

ra
te

s
(1

m
e
a
su

re
:

T
-b

il
l
ra

te
)

a
t

h
o
ri
z
o
n
s

(3
)

o
f

h
=

0
Q

,
h

=
1
Q

,
a
n
d

h
=

2
Y

a
n
d

sa
m

p
le

p
e
ri
o
d
s

(2
)

o
f
1
9
7
0
-8

4
a
n
d

1
9
8
5
-0

5
.

T
h
e

a
v
e
ra

g
e

ra
n
k
in

g
s

in
re

m
a
in

in
g

c
o
lu

m
n
s

a
re

b
a
se

d
o
n

fo
re

c
a
st

s
w

it
h

m
o
d
e
ls

th
a
t

in
c
lu

d
e

p
a
rt

ic
u
la

r
v
a
ri
a
b
le

s
o
r

fo
re

c
a
st

s
o
f
a

p
a
rt

ic
u
la

r
v
a
ri
a
b
le

,
e
tc

.
F
o
r

e
x
a
m

p
le

,
th

e
a
v
e
ra

g
e

ra
n
k
in

g
s

in
th

e
se

c
o
n
d

c
o
lu

m
n

a
re

b
a
se

d
o
n

9
6

fo
re

c
a
st

s
o
f
ju

st
o
u
tp

u
t

a
n
d

in
fl
a
ti
o
n
,
w

it
h

fo
re

c
a
st

s
o
f
in

te
re

st
ra

te
s

o
m

it
te

d
fr

o
m

th
e

a
v
e
ra

g
e

ra
n
k
in

g
c
a
lc

u
la

ti
o
n
.

2
.

S
e
e

th
e

n
o
te

s
to

T
a
b
le

3
.

30


